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The behaviour of the localization corrections of the MBPT is investigated. It is shown that 
calculating the third and fourth order localization corrections we obtain sufficiently accurate 
results to the second order correlation energy both for cyclic polyenes and for saturated hydro
carbons. The evaluation of the localization diagrams does not require significant extra computer 
time. The extra computer time can be recovered if small non-local effects wjll be neglected. 

One of the most important size extensive approaches that goes beyond the Hartree
-Fock (HF) scheme is the diagrammatic many-body perturbation theory (MBPT).I- 6 

In the so-called algebraic approximation it has been used for atoms and small 
molecules through fourth order in the energy. 7 - 10 As the evaluation of the energy 
through n-th order is an M 2n - 2 procedure (M is the number of basis functions) 
the application to larger systems is not feasible at present. 11 Formerly it was sup
posed that, for the correlation energy, local and nonlocal contribution could be 
distinguished with only the local contribution being important. 12 -14 Amos and 
Musher 15 and Davidson16 have shown how the zero order Hamiltonian and the 
wavefunction can be chosen when the orbitals are unitary transforms of the canonical 
HF orbitals. Localized orbitals have also been applied in theories involving partial 
summations (CPMETI7 .18, CEPAI9 •20 and other methods 21 .22). One of the present 
authors (E.K.) has suggested a method which is based on the localized HF orbitals 
and has shown how the local and nonlocal contribution of the correlation energy 
can be separated and the computational work decreased23 . The method has been 
applied to cyclic polyenes (with PPP Hamiltonian)24-26 and to normal saturated 
hydrocarbons (on ab initio level).27.28 Taking the structure of the molecules into 
consideration, the localized orbitals and their contribution to the correlation energy 
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have been partitioned according to the "order of neighbourhood", It has been shown 
that contributions from distant neighbours can be neglected, Similar methods have 
been used by others, 20- 31 Due to the off-diagonal Fock matrix element the per
turbational series has extra terms not occurring with canonical HF orbitals, The 
aim of the present paper is to investigate the behaviour of these terms, 

THEORETICAL 

The Hamiltonian is partitioned in the following way: 

H = H(O) + W, (1) 

The occupied single-particle functions t/I i, i = 1,2, .. " N, and the virtual single
-particle functions t/la, a = N + 1, N + 2, "" M, are solutions of the canonical HF 
equations 

(2) 
where 

N 

F = H(1) + L <jlr121(1 - PI2)U>1 , (3) 
j=1 

H(O) is chosen as 
N 

H(O) = L F(i) , (4) 
i=1 

The perturbation is the following 

N N 

W = 1/2 L ri/ L Gh;l(l - P i2 )1 j)I' (5) 
i,j= I i,j= 1 

If we localize the occupied and the virtual single-particle functions separately by 
unitary transformations 

N 

CfJI = L Uijt/lj' 
j=1 

M 

CfJa = L Vabt/lb' 
b=N+ 1 

the localized orbitals satisfy the following non-diagonal HF equations: 

N 

FCfJi = L f:1/Pj; i, j = 1,2,."" N , 
j=l 

M 

FCfJa = L f:abCfJb; a, b = N + 1, N + 2, .. " M , 
b=N+l 

(6) 

(7) 

(8) 

(9) 
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The transformed single-particle functions qJj, qJa are eigenfunctions of the HF operator 

Floc = F - L Ii) 8i/jl - L la) 8ab<bl· (10) 
i,}= 1 a,b=N+ 1 

i>#J a>#b 

The zero order Hamiltonian and the perturbation is chosen as follows: 

N 

HIOC(O) = L FloC(i) , (11) 
i=1 

N N M 

. Wloc = W + L { L Ik) 8kl<11 + L la) 8ab<bl} . {I 2) 
i=1 k,I=1 a,b=N+l 

k>#1 a>#b 

Due to the off-diagonal Fock matrix elements, the perturbation given by Eq. (12) 
has extra terms, compared with the one given by Eq. (5), entering the perturbational 
series from third order. 

In the diagrammatic formulation the terms of the perturbation series are represented 
by graphs. We apply the "mixed" Hugenholtz-Feynman representation proposed by 
Brandow.32 Through fourth order all diagrams of the canonical representation have 
been reported. 3 ,4.6 The extra terms due to the off-diagonal Fock matrix element 
are given in Figs 1 - 3 (see also refs24 - 26). 

FIG. 1 

Third order localization diagrams 

FIG. 3 

Fourth order localization diagrams derivable 
from the third order canonical diagrams 
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FIG. 2 

Fourth order localization diagrams derivable 
from the second order canonical diagram 
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We use in this paper the following denotations. The total energy correction of 
a given order n in the canonical representation is denoted by tt~:~. In the localized 
representation for n > 2 Ifi~~ consists of two terms 

tt(n) - @,,(n) + is'(") 
loe - , Ie 11 , (13) 

the first one is the contribution of the canonical diagrams evaluated by localized 
orbitals whereas the second one is the contribution of the extra (localization) terms. 

The total energy corrections through n-th order are denoted as 

and 

respectively. 

n 

E(n) = '" @"(i) 
can ,-. can 

i=2 

n 

E(n) _ '" ",(i) 
Joe - ~ {Jj loe' 

i=2 

( 14) 

(15) 

The localization diagrams can be derived from the canonical ones by inserting 
"crosses in circle" (i.e., single particle potentials) in the hole and/or in the particle 
lines. Thus the localization diagrams in Figs 1 and 2 can be generated by inserting 
into the second order canonical diagram one or two crosses, respectively. Inserting 
three crosses we obtain 14 distinct fifth order localization diagrams at the Hugenholtz 
level (they represent 45 Feynman diagrams). 

RESULTS 

Cyclic Polyenes in PPP Approximation 

The calculations for the cyclic polyenes: CNHN, N = 4n + 2, n = 1,2,3,4,5,6,7, 
were carried out in PPP approximation with Mataga-Nishimoto parametriza
tion.24-26.33 

The Hamiltonian is the following 

IL,v.a 
11*-

11, -
tr,t 

(16) 

where }-I, v and u, " are atomic orbital and spin indices, respectively. Ir 1 can be 
regarded as coupling constant, whose "physical" value is about -2·5 eV. 

The canonical HF orbitals are completely fixed by symmetry. We applied those 
sets of localized orbitals which formally corresponds to a Kekule structure. The 
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(equivalent) localized orbitals of this set are the following: 

N 

CfJi = I Ci/lX/l ' (17) 
/l=1 

where x" are the atomic 2pz basis functions. The coefficients for the occupied orbitals 
equal 

N/4 - 1/2 

Ci/l = 21/2N- 1 {1 + 2 I cos 1tp(2p. - 4i + 1)jN} , (18) 
p=1 

and for the virtual obitals equal 
. N/4-1/2 

C;/l = 21/ 2N- I ( _1)/l-1{1 + 2 I cos 1tp(2/L - 4i + 1)!N} , (19) 
p=1 

where i = 1,2,3, ... , N/2. 

I n Fig. 4 we show the dependence of the third order localization correction tff'W 

(Fig. 1) and the total fourth order localization correction tff'W (Figs 2 and 3) per 
particle on the size of the systems. As can be seen, for smaller systems these correc
tions rapidly increase with the size but for larger systems they apparently go to 
saturation. Except for C 6H6 the third order term is larger than the fourth order one, 
their order of magnitude is, however, comparable everywhere. It means that the 
third and fourth order terms are of equal importance. 

Adding the contributions of all localization diagrams together, which can be gene
rated from the second order canonical diagram if the perturbation series converges, 
the result should be equal to E~;,: - E\~{ Taking this difference as 100% we display 
for CIOHIO in Fig. 5 the contributions with increasing order as the function of the 
coupling constant (fJ). The third order term 0"\21.1) = 6'W can only reproduce 45% 
of the difference at the "physical value" of the coupling constant (fJ = -2,5 eV). 
The fourth order contribution tff'~21·1) + tff'~21·2) gives 85% and the fifth order con
tribution 6';\~.I) + 6"~~.2) + 1o"\~·3) reproduces 93%. It means that the error is 15% 
and 7%. respectively. The third order (6"\21,1») and the fourth order (tff'~21,2» terms are 
again of comparable magnitude. If we take the canonical second order correction 
E~;~ as 100%, we obtain for the errors only 1'72% and 0'84%, respectively. It means 
that the contribution through fourth order is sufficient in most cases. 

Normal Saturated Hydrocarbons 

The canonical HF equations have been solved for normal saturated hydrocarbons 
C2n + 1 H4n +4 , n = 0, 1, 2, with standard STO-3G basis set, and model geometry: 
RCH = 1·094 A, * Rcc = 1·526 A and tetrahedral valence angles. Program system 

.. I A = 10- 10 m. 
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SYCETY has been applied efficiently utilizing the C2v symmetry of the systems. 34 - 36 

The canonical occupied and virtual orbitals have been localized by Boys' method,37 
separately. After appropriate integral transformation the second order energy 

---

N 

FIG. 4 

Third and fourth order localization corrections per particle for cyclic polyenes CNHN as function 
of N 

FIG. 5 
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Proportions of the localization correction for C 1 oH 10 recovered by the contributions of 
localization diagrams derivable from the second order canonical diagram as function of the 
coupling constant. E~;~ - E\;/ is taken as 100% 
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corrections have been evaluated in the localized and in the canonical representation 
and shown in Table J. Due to the localizability of the systems the results in the two 
representations are very close together. In Table II we display the third order localiza
tion corrections 6"121,1) = 6"W, and those fourth order localization corrections 6"121,2) 

the graphs of which can be generated from the second order canonical diagram, 

TABLE I 

The second order correlation energy calculated in the localized and in the canonical representa
tion (in a.u.)a with STO-3G basis set 

Molecule E(2) 
10c 

E(2) 
can 

-0'0560169 -0'0571078 
-0'1545420 -0'1590773 
-0,2537892 -0'2621150 

a I a.u. = 4'3598.10- 18 J. 

TABLE II 

The contributions of the third and fourth order localization diagrams derivable from second 
order canonical diagram with STO-3G basis set (in %, E~;~ - E[;2 is taken as 100%) 

Molecule ,S?!,l) 0"\21,2) t'l21,l) + O"i21,2) 

CH4 26·98 8\086 108'83 

C 3 H S 37'53 66·74 104'26 
CS H12 40'63 62'57 103·20 

TABLE III 
Contributions of the third and fourth order localization diagrams derivable from the second 
order canonical diagram for CH4 with 6-31G and 6-3IG* basis sets and two different sets of 
localized virtual orbitals (in %, the corresponding E~~~ - E[;2 is taken as 100%) 

Basis set (E~;~ - E!;l) . 102 ei~,l) 6"( 2 ,2) 
11 

eg,1) + C\21,1) 

6-31G (i) -0,72132 4·77 84·47 89'14 
6-31G (ii) -0'31276 47·41 37·47 84·88 

6-31 G* (i) -2'78849 53·41 32·14 85'54 
6-3IG* (ii) -1'15346 68'50 37'19 105'69 

----
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If the perturbation series converges their sum 0"121,1) + 0"121,2) should be close to the 
difference E~;~ - E\~1 which we take as 100%. It can be seen, that the third order 
contributions are smaller than the fourth order ones, their sum slightly overshoots 
the difference, but the error is smaller than 9%, in every case. (If we would take 
E~;~ as 100% the error would be less than 0'2%.) 

The results depend strongly upon the basis set. Applying larger basis sets there 
will be more diffuse orbitals among the virtual ones and different sets of localized 
virtual orbitals are obtained if the localization procedure is used for all orbitals 
at once (i) or step by step(ii). In Table III we show for CH4 with 6-31 G and 6-31 G* 
basis sets the second order correction in the canonical (E~;~) and in the localized 
(E\;~(i) and E\~Wi)) representations. We can see that the results in the two localized 
representations are significantly different from each other. In Table III we display 
gi~,l) and 0"121,1) + 0"121,2) taking the corresponding E~;~ - E\~~ difference as 100%. 
Here again the third and fourth order terms are of the same magnitude. The actual 
values depend on the basis and on the localization. If we apply the step by step 
procedure (ii) the difference E~;~ - E\~2 is smaller but gl~' 1) + 6"i21,2) differs from 
it slightly the error is 16%, and 6%. respectively. If we compare the error to E~;~ we 
obtain only O· 5% in both cases. By using the other localization procedure the difference 
E~;~ - E\~2 is larger and the errors are 11 % and 15%. or 3% in both cases. 

CONCLUSION 

In the localized representation of the MBPT we have to evaluate extra terms, which 
requires extra computer time. It is, however, a small fraction of the total computer 
time. Evaluating gi21,1) and 0"\21,2) we have to sum over 5 and 6 indices (and not over 
6 and 8 indices as in conventional third and fourth order terms). The advantage of 
the localized representation is that the local and non-local effects can be separated 
by partitioning the "localized orbitals according to the order of neighbourhood" 
and neglecting terms which are of higher order27 ,28. It would drastically decrease 
the computer time because the integrals over localized orbitals which will be omitted 
will not be generated by integral transformation. 

The results of this paper clearly show that calculation of the third and fourth 
order localization corrections give sufficiently accurate energies. 

The calculations have been carried out at the Computer center of the Technical University. 
Budapest and at the Kalmar Laboratory of Cybernetics, J6zsef Attila University, Szeged. The 
assistance of the staff is gratefully ackllowledged. 
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